Posts tagged ‘swappiness’

vm.swappiness=0在最新内核中可能会OOM,MySQL被意外kill

请使用RHEL/CentOS 6.4及更新版本内核的MySQL同志们注意,vm.swappiness = 0的默认行为修改了,如果继续设置vm.swappiness = 0,有可能导致系统内存溢出,从而导致MySQL被意外kill掉。

在之前的《LINUX上MYSQL优化三板斧》中,我们建议大家把 vm.swappiness = 0 设置好。来尽量避免MySQL的服务器内存被交换出去。这样Linux在把内存交换出去时更偏向于将cache页交换出去,而不是将inactive页交换出去。详细描述请参考:http://hatemysql.com/?p=463。

经常有人会问, vm.swappiness = 0会不会导致Linux在有swap空间的时候也不交换出去,从而导致内存溢出(OOM)。参照《LINUX上MYSQL优化三板斧》介绍,我们知道,这个值只是一个Linux在判断是否交换内存(swap)的一个“倾向”参考值,而并不是说,设置为0以后,Linux就完全不会使用内存交换空间。

但是,在较新的内核中(2.6.32-303.el6及以后),vm.swappiness = 0 的默认行为修改掉了,这个说法不再成立。设置该参数vm.swappiess=0,有可能导致MySQL数据库所在的系统出现内存溢出。一般来说,MySQL数据库占用的内存是整个服务器中最大的,根据Linux的策略,它会会首先把MySQL给Kill掉(调整 /proc/(pidof -s mysqld)/oom_adj可以改变OOM时kill的优先级),从而导致应用故障等。

这个修改是在内核3.5-rc1中提交的,并且合并到了2.6.32-303.el6及之后的各个版本。先让我们来看看这个patch:

http://gitorious.ti.com/ti-linux-kernel/ti-linux-kernel/commit/fe35004fbf9eaf67482b074a2e032abb9c89b1dd?format=patch

就像Satoru Moriya所说的那样,在之前的版本中,就算我们设置了swappiness=0并且RAM中还有pagecache,内核也可能会交换出部分匿名内存页。而为了“满足用户的需求”,这个patch修改了swappiness=0的行为,如果你设置swappiness=0,那么只有在(nr_free + nr_filebacked < high watermark)才会交换内存,也就是说空闲内存和文件缓存基本没有了才会触发内存swap。这样的话,副作用在于:内存如果不够了,Linux有可能触发OOM,从而kill掉耗费内存最多的MySQL进程。

在2.6.32-303.el6 RHEL/CentOS及更新版本的内核中,该patch就已经被合并进来:

其他分发版本的Linux(比如Debian,Ubuntu)的版本中,请各位自己查阅一下,看看时候已经合并该patch。

RHEL/CentOS 6.3的内核版本是2.6.32-279,而RHEL/CentOS 6.4的内核为2.6.32-358,从这个版本开始,swappiness的行为就已经修改了,使用这个版本及之后版本的同志们需要特别注意一下。

解决的办法其实也很简单,

1、尽量保证Linux操作系统还有足够的内存

2、最新的内核,建议把vm.swappiness设置1

3、考虑设置 /proc/(pidof -s mysqld)/oom_adj为较小的值来尽量避免MySQL由于内存不足而被关闭。

参考:

https://github.com/torvalds/linux/blob/master/mm/vmscan.c

http://gitorious.ti.com/ti-linux-kernel/ti-linux-kernel/commit/fe35004fbf9eaf67482b074a2e032abb9c89b1dd?format=patch

http://www.mysqlperformanceblog.com/2014/04/28/oom-relation-vm-swappiness0-new-kernel/

Linux上MySQL优化三板斧

现在MySQL运行的大部分环境都是在Linux上的,如何在Linux操作系统上根据MySQL进行优化,我们这里给出一些通用简单的策略。这些方法都有助于改进MySQL的性能。
闲话少说,进入正题。

一、CPU

首先从CPU说起。
你仔细检查的话,有些服务器上会有的一个有趣的现象:你cat /proc/cpuinfo时,会发现CPU的频率竟然跟它标称的频率不一样:

这个是Intel E5-2620的CPU,他是2.00G * 24的CPU,但是,我们发现第5颗CPU的频率为1.2G。
这是什么原因列?
这些其实都源于CPU最新的技术:节能模式。操作系统和CPU硬件配合,系统不繁忙的时候,为了节约电能和降低温度,它会将CPU降频。这对环保人士和抵制地球变暖来说是一个福音,但是对MySQL来说,可能是一个灾难。
为了保证MySQL能够充分利用CPU的资源,建议设置CPU为最大性能模式。这个设置可以在BIOS和操作系统中设置,当然,在BIOS中设置该选项更好,更彻底。由于各种BIOS类型的区别,设置为CPU为最大性能模式千差万别,我们这里就不具体展示怎么设置了。

二、内存

然后我们看看内存方面,我们有哪些可以优化的。

i)我们先看看numa

非一致存储访问结构 (NUMA : Non-Uniform Memory Access) 也是最新的内存管理技术。它和对称多处理器结构 (SMP : Symmetric Multi-Processor) 是对应的。简单的队别如下:

Smp numa

如图所示,详细的NUMA信息我们这里不介绍了。但是我们可以直观的看到:SMP访问内存的都是代价都是一样的;但是在NUMA架构下,本地内存的访问和非本地内存的访问代价是不一样的。对应的根据这个特性,操作系统上,我们可以设置进程的内存分配方式。目前支持的方式包括:

简而言之,就是说,你可以指定内存在本地分配,在某几个CPU节点分配或者轮询分配。除非是设置为–interleave=nodes轮询分配方式,即内存可以在任意NUMA节点上分配这种方式以外。其他的方式就算其他NUMA节点上还有内存剩余,Linux也不会把剩余的内存分配给这个进程,而是采用SWAP的方式来获得内存。有经验的系统管理员或者DBA都知道SWAP导致的数据库性能下降有多么坑爹。
所以最简单的方法,还是关闭掉这个特性。
关闭特性的方法,分别有:可以从BIOS,操作系统,启动进程时临时关闭这个特性。
a)由于各种BIOS类型的区别,如何关闭NUMA千差万别,我们这里就不具体展示怎么设置了。
b)在操作系统中关闭,可以直接在/etc/grub.conf的kernel行最后添加numa=off,如下所示:

另外可以设置 vm.zone_reclaim_mode=0尽量回收内存。
c)启动MySQL的时候,关闭NUMA特性:

当然,最好的方式是在BIOS中关闭。

ii)我们再看看vm.swappiness。

vm.swappiness是操作系统控制物理内存交换出去的策略。它允许的值是一个百分比的值,最小为0,最大运行100,该值默认为60。vm.swappiness设置为0表示尽量少swap,100表示尽量将inactive的内存页交换出去。
具体的说:当内存基本用满的时候,系统会根据这个参数来判断是把内存中很少用到的inactive 内存交换出去,还是释放数据的cache。cache中缓存着从磁盘读出来的数据,根据程序的局部性原理,这些数据有可能在接下来又要被读取;inactive 内存顾名思义,就是那些被应用程序映射着,但是“长时间”不用的内存。
我们可以利用vmstat看到inactive的内存的数量:

通过/proc/meminfo 你可以看到更详细的信息:

这里我们对不活跃inactive内存进一步深入讨论。Linux中,内存可能处于三种状态:free,active和inactive。众所周知,Linux Kernel在内部维护了很多LRU列表用来管理内存,比如LRU_INACTIVE_ANON, LRU_ACTIVE_ANON, LRU_INACTIVE_FILE , LRU_ACTIVE_FILE, LRU_UNEVICTABLE。其中LRU_INACTIVE_ANON, LRU_ACTIVE_ANON用来管理匿名页,LRU_INACTIVE_FILE , LRU_ACTIVE_FILE用来管理page caches页缓存。系统内核会根据内存页的访问情况,不定时的将活跃active内存被移到inactive列表中,这些inactive的内存可以被交换到swap中去。
一般来说,MySQL,特别是InnoDB管理内存缓存,它占用的内存比较多,不经常访问的内存也会不少,这些内存如果被Linux错误的交换出去了,将浪费很多CPU和IO资源。 InnoDB自己管理缓存,cache的文件数据来说占用了内存,对InnoDB几乎没有任何好处。
所以,我们在MySQL的服务器上最好设置vm.swappiness=0。

我们可以通过在sysctl.conf中添加一行:

并使用sysctl -p来使得该参数生效。

三、文件系统

最后,我们看一下文件系统的优化

i)我们建议在文件系统的mount参数上加上noatime,nobarrier两个选项。

用noatime mount的话,文件系统在程序访问对应的文件或者文件夹时,不会更新对应的access time。一般来说,Linux会给文件记录了三个时间,change time, modify time和access time。
我们可以通过stat来查看文件的三个时间:

其中access time指文件最后一次被读取的时间,modify time指的是文件的文本内容最后发生变化的时间,change time指的是文件的inode最后发生变化(比如位置、用户属性、组属性等)的时间。一般来说,文件都是读多写少,而且我们也很少关心某一个文件最近什么时间被访问了。
所以,我们建议采用noatime选项,这样文件系统不记录access time,避免浪费资源。
现在的很多文件系统会在数据提交时强制底层设备刷新cache,避免数据丢失,称之为write barriers。但是,其实我们数据库服务器底层存储设备要么采用RAID卡,RAID卡本身的电池可以掉电保护;要么采用Flash卡,它也有自我保护机制,保证数据不会丢失。所以我们可以安全的使用nobarrier挂载文件系统。设置方法如下:
对于ext3, ext4和 reiserfs文件系统可以在mount时指定barrier=0;对于xfs可以指定nobarrier选项。

ii)文件系统上还有一个提高IO的优化万能钥匙,那就是deadline。

在Flash技术之前,我们都是使用机械磁盘存储数据的,机械磁盘的寻道时间是影响它速度的最重要因素,直接导致它的每秒可做的IO(IOPS)非常有限,为了尽量排序和合并多个请求,以达到一次寻道能够满足多次IO请求的目的,Linux文件系统设计了多种IO调度策略,已适用各种场景和存储设备。
Linux的IO调度策略包括:Deadline scheduler,Anticipatory scheduler,Completely Fair Queuing(CFQ),NOOP。每种调度策略的详细调度方式我们这里不详细描述,这里我们主要介绍CFQ和Deadline,CFQ是Linux内核2.6.18之后的默认调度策略,它声称对每一个 IO 请求都是公平的,这种调度策略对大部分应用都是适用的。但是如果数据库有两个请求,一个请求3次IO,一个请求10000次IO,由于绝对公平,3次IO的这个请求都需要跟其他10000个IO请求竞争,可能要等待上千个IO完成才能返回,导致它的响应时间非常慢。并且如果在处理的过程中,又有很多IO请求陆续发送过来,部分IO请求甚至可能一直无法得到调度被“饿死”。而deadline兼顾到一个请求不会在队列中等待太久导致饿死,对数据库这种应用来说更加适用。
实时设置,我们可以通过
[pre]
echo deadline >/sys/block/sda/queue/scheduler[/pre]

来将sda的调度策略设置为deadline。

我们也可以直接在/etc/grub.conf的kernel行最后添加elevator=deadline来永久生效。

总结

  1. CPU方面
    • 关闭电源保护模式
  2. 内存:
    • vm.swappiness = 0
    • 关闭numa
  3. 文件系统:
    • 用noatime,nobarrier挂载系统
    • IO调度策略修改为deadline。

 

参考文档:
http://www.gentoo-wiki.info/FAQ_Linux_Memory_Management
http://bbs.gfan.com/android-4165836-1-1.html
https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling_(%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87)
http://www.mysqlperformanceblog.com/2013/12/07/linux-performance-tuning-tips-mysql/